Effect of Problem-Solving Instructional Method on Upper Basic Two Students’ Interest in Basic Science in Makurdi Metropolis, Benue State, Nigeria

By

Tofi Msuur, M. J. Adejoh, A. N. O. Ochu
Department of Science Education, University of Agriculture, Makurdi

Abstract

The study investigated the Effect of Problem-Solving Instructional Method on Upper Basic Two Students’ Interest in Basic Science in Makurdi, Benue State. Two research questions were raised and two null hypotheses were formulated and tested at 0.05 level of significance. The design for the study was a quasi-experimental research design. The sample size for the study was made up of 137 upper Basic two students. Purposive and random sampling techniques were adopted in selecting the required sample. The instrument Basic Science Interest Inventory (BSII) of \(r = 0.89\) was used for data collection. Research questions were answered using descriptive statistics of mean and standard deviation while Analysis of Co-variance (ANCOVA) was used to test the hypotheses at 0.05 level of significance. The findings revealed that, there was a significant difference in the mean interest ratings of students taught Basic Science using Problem-Solving Instructional Method and those taught using Conventional Method and also, there was no significant difference in the mean interest ratings of male and female students’ taught Basic Science using Problem-Solving Instructional Method. Based on the findings of the study it was concluded that students’ interest were enhanced due to the innovative method. Recommendations were made among others that, Secondary school teachers should be discouraged from the continuous use of conventional method in the teaching of Basic Science as the method make students performed poorly in the BSAT in Basic Science. This can be done by organizing seminars and workshops for teachers on the use of innovative teaching methods such as Problem Solving Instructional Method.

The key words: Science, Basic Science, Interest, Problem-Solving Instructional Method and Gender

INTRODUCTION

Science is a way of thinking in pursuit of understanding nature, a way of investigating and a body of establishing knowledge (Aniodoh, 2012). Science therefore is very critical and relevant in shaping the way people think, explore, generate and apply knowledge about our environment. According to Aniodoh and Egbo (2013), science plays a very important role in the development of any nation. Adejoh (2006) opines that science contribute to the quality of life in areas such as health, nutrition, agriculture, transportation, material and energy production and industrial development. The purpose of science is to transform the environment towards improving the general quality of life, thus making the world a better place where we live.

Basic Science, formerly known as Integrated Science, is one of the science subjects developed to enable students learn scientific skills, principles and values at the Lower, Middle and Upper Basic Education Level. It is a multi-disciplinary subject that comprises of concepts in Biology, Physics, and Chemistry among others (Oludipe, 2012). Basic Science is taught at the Lower Basic Education (primary 1-3), Middle Basic Education (primary 4-6) and Upper Basic Education (JSS 1-3) levels.

Basic Science is one of the core subjects for Basic Education and also, a prerequisite subject into careers in science and technology. This implies that for a student to be able to study single science subjects at the Senior Secondary School level successfully, such student had to be well grounded in Basic Science at the Upper Basic Education Level.

Despites the importance of Basic Science to national development and academic pursuit, the
level of students' academic achievement in the subject has not been impressive as seen from Basic Education Certificate Examination results (2009-2014). This has remained the greatest concern to educational stakeholders and parents. Various steps had been taken by the Government and educational planners in Nigeria in an attempt to overcome the problem of low achievement of students in Basic Science. For instance, the government has strengthened its policy on the school supervision to make teachers more committed to duty, encouraged science teachers through science allowance and encouraged teachers to attend conferences, seminars and in-service training (Danjuma and Nwagbo, 2015). Unfortunately, these efforts have only yielded minimal result. This condition may not be unconnected with the students’ level of interest in the subject, considering the fact that students generally learn when they have certain degree of interest in what they are expected to learn (Danjuma and Nwagbo, 2015).

Interest is the feeling one has in wanting to know or learn more about something (Horny, 2001). Interest could be defined as the energizer of learning without which meaningful learning may not take place (Abakpa, 2011), Imoko and Agwagah (2006), have also looked at interest as a subjective feeling of concentration or persisting tendency to pay attention and enjoy some activity or content. Children’s interest needs to be stimulated in order to learn, even though they are physically and intellectually capable of learning. Once stimulated, they continue to learn as long as the teacher is capable of sustaining their interest in the subject matter. The level of a person’s interest has been found to be a powerful influence on learning. Specifically, interest has been found to influence attention, goals and levels of learning (Renninger, 2000).

Even though interest has been recognized as an important condition for learning Basic Science, science teachers continue to wrestle with the difficulties of working with academically unmotivated students (Hidi & Renninger, 2006). Available studies have shown that students generally have weak interest towards Basic Science (Ekon, Ekwueme & Meremikwu, 2014; Danjuma & Nwagbo, 2015). This may be as a result of teaching of concepts in abstract instead of practical (Tsoro, 2010). Science teachers do not use student-centred teaching strategies to boost students’ interest in science (Utubaku, 2015). In fact, teachers often think that students either have or do not have interest and might not recognize that they could make a significant contribution to the development and sustainability of student’s interest (Hidi & Renninger, 2006). It therefore, implies that interest is important variable teachers must consider when teaching Basic Science. In other words students’ will learn well and achieve high in Basic Science if teachers are able to utilize instructional method that will arouse and sustain their interests.

The teaching of Basic Science should be student-centered, activity oriented and therefore rote learning and memorization of isolated facts is discouraged. For this purpose, the use of discovery teaching tactics; the inclusion of problem-solving activities and; the involvement of students in open-ended field or laboratory exercises have been advocated for (Federal Ministry of Education in Ityokyaa, 2013; NERDC, 2007; Ogunkunle and Mbelede, 2008). All these methods recommended are inquiry based. For an individual to be productive and functional in a changing society, he/she must acquire the right attitudes and functional skills which can only be cultivated in learners through appropriate teaching of science using innovative methods.

Problem-Solving is a process which focuses on knowing the issues, considering all possible factors that lead to finding a solution. Problem-Solving is a means by which an individual uses previously acquired knowledge, skill and understanding to satisfy the demand of an unfamiliar situation (Carson, 2007). The approach makes students to inquire into a problem with a view to finding some answers to existing problems, also provides the learner the opportunity of identifying and clarifying data; drawing conclusion, applying the conclusion in new situations to new data and developing meaningful generalizations (Adejoh, 2007).

Problem-Solving Instructional Method is aimed at generating enthusiasm and interest in students because it is activity-oriented, it helps to
develop skills of scientific investigation and critical thinking, it results to better long term retention, leads to learning of new ideas and stimulates intellectual curiosity (Adejoh, 2007; Carson, 2007). Thiers (2000) supported ideal that there are important economic, environmental and social realities that demands new skills and literacy from our students today. Igboko and Ibeneme (2006) identifies globalization and rapid technological changes as some of the contributory factors to the shift from Conventional Method such as lecture method which have proved incapable of producing the effects required for coping with the challenges posed by globalization and rapid technological development. Thus, problem-solving curricula and pedagogy are out to address this need, hence there is need to test the effects of Problem-Solving Instructional Method on Basic Science students interest and achievement.

Furthermore, influence of gender on interest and achievement in science continues to be a debate among science education researchers. Gender is socially construed to mean roles and responsibilities of women and men, in a given culture or location. These roles are influenced by the perceptions and expectations arising from the society (Ada, 2011). Review of studies show inconsistence on results of male and female students’ interest in science. Busola (2011) states that girls tend to lose interest in science at the primary school level even when they perform better than the boys.

However, reports from the study of Nwagbo and Okoro (2014) indicate that boys show greater interest in science particularly in Biology than their female counterparts. Other studies found that female students achieved better than their male counterparts in interest. While some reported that there are no longer distinguishing differences in interest of students in respect of gender. These disparities among research studies need more empirical evidence for better understanding of influence of gender on students’ interest in science especially in Basic Science. This present study therefore attempts to investigate if Problem-Solving Instructional Method when used in teaching Basic Science will equally benefit both male and female in Basic Science Achievement Test.

Statement of the Problem

Basic Science is a core subject at the Upper Basic Education level. It occupies an important position as it serves as the bedrock for further scientific and technological studies. Because of the importance of Basic Science, it should be taught using students centered methods in order to enable students gain scientific and technological knowledge and skills that will enable them fit in to the technologically driven society of today.

Despite the importance of Basic Science, reports have revealed the lack of interest of students in science subjects in general and Basic Science in particular. The persistence lack of interest in science especially Basic Science among students makes it imperative to search for better teaching method for effective teaching and learning of Basic Science concepts. This lack of interest in Basic Science has been blamed on lack of time and lack of science equipment which makes science teachers to continuously use the Conventional Method.

Literature have reviewed that teachers are still teaching Basic Science using conventional method as a result of time factor and insufficient resources among others. This may be one of the reasons for the observed students’ poor interest in the subject. Researchers have found out that Problem-Solving Instructional Method which is one of the students centered methods has potentials of enhancing students’ interest and retention in various science subjects. One may want to find out whether Problem-Solving Instructional Method can enhance Basic Science students interest and achievement. Thus, the problem of this study put in question form is, what is the effect of Problem-Solving Instructional Method on upper basic two student’s interest in Basic Science in Makurdi, Benue State?

Purpose of the Study

The purpose of the study was to determine the effect of Problem-Solving Instructional Method on upper basic two students’ interest in Basic Science in Makurdi Metropolis, Benue State. Specifically the study was to:
1. Determine the interest levels of students taught Basic Science using Problem-Solving Instructional Method and those taught using Conventional Method.

2. Find out if there is any difference in the interest levels of male and female students taught Basic Science using Problem-Solving Instructional Method Instructional.

Research Questions

The following research questions guided this research work:

1. What is the difference in the mean interest ratings of students taught Basic Science using Problem-Solving Instructional Method and those taught using Conventional Method?

2. What is the difference in the mean interest ratings of male and female students taught Basic Science using Problem-Solving Instructional Method?

Hypotheses

The following hypotheses were formulated and tested at 0.05 level of significance.

1. There is no significant difference in the mean interest ratings of students taught Basic Science using Problem-Solving Instructional Method and those taught using Conventional Method.

2. There is no significant difference in the mean interest ratings of male and female students taught Basic Science using Problem-Solving Instructional Method.

METHODOLOGY

The study employed a quasi-experimental design of non-equivalent group. Specifically, the study used a non-randomized pre-test, post-test control group design. The area of the study is Makurdi Local Government Area of Benue State. Makurdi is the capital of Benue State. Geopolitically, it is located in the North Central region of Nigeria. Makurdi Local Government Area is made up of 2 state constituencies namely; Makurdi North and Makurdi South with 11 council wards and they are as follows: Agan ward, Mbalagh ward, North-Bank 1 ward, North-Bank 2 ward, Fiidi ward, Walomayo ward, Baa ward, Ankpa-Wadata ward, Mission ward, Central South Mission ward and Modern Market ward. The predominant economic activities in the study area include commerce, service sector and agriculture. Agriculture is however practiced on a small scale, basically gardening around the river banks and other swampy areas. Fishing, bricks lying and sand miners are other major activities carried out at the river banks.

Makurdi Local Government Area hosts four tertiary institutions which include the Federal University of Agriculture, Benue State University, School of Nursing and College of Advanced and Profession Studies. There are 68 government approved secondary schools and Universal Basic Education (UBE), in which Basic Science is being taught (Benue State Ministry of Education, 2014). The choice of the Makurdi Local Government Area was because the researcher observed poor achievement of students’ in Basic Education Certificate Examination (BECE) in Basic Science. Another reason that influenced the study in Makurdi was for easy collection of data.

The sample size for the study is 137 Upper Basic two students made up of 57 males and 80 females which were drawn from four secondary schools in the Local Government Area. Purposive and random sampling technique were used to sample co-educational schools, the schools must have been presenting students for Basic Education Certificate Examination (BECE) for at least 10 years, the schools must have a qualified Basic Science teacher (Specifically one who studied B.Ed or B.Sc (Ed) Integrated Science at the University level) and the schools must have at least two streams. 14 schools met these conditions. Simple random sampling was used for selected four schools from the schools that met these conditions for the study.

Furthermore, a simple random sampling technique of “Hat and Draw” was used to assign the four schools into two experimental and two control groups. The choice of this technique was to give every sampled school an equal chance of been selected. Finally, one intact class was randomly selected in each of the sampled schools.
The instrument used for data collection for this study was Basic Science Interest Inventory (BSII). The Basic Science Interest Inventory (BSII) was an adapted instrument from (Abonyi, 2011). It is consisted of two sections. Section A: sought information on the Bio-data of the respondents, while section B consisted of 20 items bothered on their interest in Basic Science. The instrument was validated by five experts, two in the field of science education and one psychologist from the Benue State University, Makurdi, one measurement and evaluation expert from the University of Agriculture, Makurdi and one Basic Science teacher currently teaching Basic Science in secondary school. Recommendations arising from these expertise were useful in modifying the instruments to obtain a final draft. The reliability of the instrument (BSII) was determined using Cronbach Alpha coefficient method and the reliability coefficient was found to be 0.89.

The research assistants were recruited and trained (micro teaching) for two days using a teaching Manual Guide. The teaching manual guide was adapted by the researcher and validated by experts in the field of science education specifically Basic science. Four Basic Science teachers participated as research assistants in the study. Both the pre-tests and post-tests were marked by the researcher according to the marking scheme. Thereafter, the researcher gathered the results for further analysis. The research questions posed were answered using descriptive statistics of mean and standard deviation. The hypotheses formulated were tested at 0.05 level of significance using inferential statistics of Analysis of Covariance (ANCOVA). Analysis of Covariance (ANCOVA) was used to serve as a control for the initial differences across the two groups; since the data was collected using pre-tests and post-tests and ANCOVA was used to correct error resulting from using intact groups whose equivalence on certain measures has not been determined.

RESULTS AND DISCUSSION

Research Question One: What is the difference in the mean interest ratings of students taught Basic Science using Problem-Solving Instructional Method and those taught using Conventional Method?

Table 1: Mean and Standard deviations of students interest ratings in experimental and control groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of Students</th>
<th>Pre test Mean</th>
<th>SD</th>
<th>Post-test Mean</th>
<th>SD</th>
<th>Gain</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>73</td>
<td>12.85</td>
<td>2.62</td>
<td>31.07</td>
<td>4.62</td>
<td>18.22</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>64</td>
<td>13.69</td>
<td>3.65</td>
<td>15.31</td>
<td>4.28</td>
<td>1.62</td>
<td></td>
</tr>
<tr>
<td>Mean Difference</td>
<td>0.84</td>
<td>15.76</td>
<td>16.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The results in Table 1 shows that the students taught Basic Science with Problem-Solving method has a pre-test mean interest ratings of 12.85 with a standard deviation of 2.62 and post-test mean interest ratings of 31.07 with a standard deviation of 4.62, while those taught with conventional method has a pre-test mean interest ratings of 13.69 with a standard deviation of 3.65 and post-test mean interest ratings of 15.31 with a standard deviation of 4.28. The students in the experimental and control group had a mean gain of 18.22 and 1.62 respectively.

Hypothesis One: There is no significant difference in the mean interest ratings of students taught Basic Science using Problem-Solving Instructional Method and those taught using Conventional Method.
Table 2: Analysis of Covariance (ANCOVA) of students’ interest ratings in experimental and control groups

<table>
<thead>
<tr>
<th>Source of Variance</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>52.937a</td>
<td>2</td>
<td>26.469</td>
<td>.319</td>
<td>.027</td>
</tr>
<tr>
<td>Intercept</td>
<td>4832.500</td>
<td>1</td>
<td>4832.500</td>
<td>58.321</td>
<td>.000</td>
</tr>
<tr>
<td>Pretest interest</td>
<td>32.054</td>
<td>1</td>
<td>32.054</td>
<td>.387</td>
<td>.000</td>
</tr>
<tr>
<td>Method</td>
<td>24.191</td>
<td>1</td>
<td>24.191</td>
<td>.292</td>
<td>.035</td>
</tr>
<tr>
<td>Error</td>
<td>11103.384</td>
<td>134</td>
<td>82.861</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>88160.000</td>
<td>137</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>11156.321</td>
<td>136</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. R Squared = .005 (Adjusted R Squared = -.010)

The summary of ANCOVA presented in Table 2 shows that the treatment (problem solving instruction method) was significant in the interest test. This is shown by the F value for interest (F=.292, P=.035<0.05). Therefore the null hypothesis is not accepted. This shows that there is a significant difference between the mean interest ratings of students in the experimental group and control group.

Research Question Two: What is the difference in the mean interest ratings of male and female students taught Basic Science using Problem-Solving Instructional Method?

Table 3: Mean and Standard deviations of male and female students interest ratings in experimental group.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Number of Students</th>
<th>Pre test</th>
<th>Post-test</th>
<th>Mean Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td>Male</td>
<td>32</td>
<td>12.75</td>
<td>1.98</td>
<td>31.63</td>
</tr>
<tr>
<td>Female</td>
<td>41</td>
<td>12.93</td>
<td>3.04</td>
<td>30.63</td>
</tr>
<tr>
<td>Mean difference</td>
<td>0.18</td>
<td>1.00</td>
<td>1.18</td>
<td></td>
</tr>
</tbody>
</table>

The results in Table 3 indicates that in the pre BSII the male students had a mean interest ratings of 12.75 and the female students 12.93. This shows that the two groups were homogenous to some extent at the beginning of the experiment. The results in table 3 also shows that the male students had a mean interest ratings of 31.63 in the post-BSII while the female students had a mean interest ratings of 30.63 in the post-BSII. The mean gain interest ratings of male and female students were 18.88 and 17.70 respectively.

Hypothesis Two

There is no significant difference in the mean interest ratings of male and female students taught Basic Science using Problem-Solving Instructional Method.
Table 4: Analysis of Covariance (ANCOVA) of male and female students’ interest ratings in experimental group

<table>
<thead>
<tr>
<th>Source of Variance</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>18.532(a)</td>
<td>2</td>
<td>9.266</td>
<td>.427</td>
<td>.654</td>
</tr>
<tr>
<td>Intercept</td>
<td>2685.048</td>
<td>1</td>
<td>2685.048</td>
<td>123.643</td>
<td>.000</td>
</tr>
<tr>
<td>Pretest interest</td>
<td>.887</td>
<td>1</td>
<td>.887</td>
<td>.041</td>
<td>.840</td>
</tr>
<tr>
<td>Gender</td>
<td>17.893</td>
<td>1</td>
<td>17.893</td>
<td>.824</td>
<td>.367</td>
</tr>
<tr>
<td>Error</td>
<td>1520.126</td>
<td>70</td>
<td>21.716</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>72002.000</td>
<td>73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>1538.658</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. R Squared = .012 (Adjusted R Squared = -.016)

The summary of ANCOVA presented in Table 4 shows that the treatment (problem solving instruction method) was not significant due to gender in the interest test. This is shown by gender F value for interest (F=.824, P=.367>.05). Hence, the null hypothesis is upheld. This means that there is no significant difference between the mean interest ratings of male and female students in the experimental group.

DISCUSSIONS

The analysis reveals a significant difference in the mean interest ratings of students taught Basic Science using Problem-Solving Instructional Method and those taught using the Conventional Method (Tables 1 and 2). This the Problem-Solving Instructional Method employed for the experimental group which was highly stimulating in transforming difficult and boring activities into easy and pleasurable experiences thereby increasing students’ interest in Basic Science. The students in the experimental group experienced possible ways of solving problems and thus had their interest in Basic Science increased more than their counterparts in the control group who were not exposed to similar instructional method.

Again, the finding shows that there was no significant difference in the mean interest ratings of male and female students taught Basic Science using Problem-Solving Instructional Method (Tables 3 and 4). This finding is in line with the assertion by Abakpa (2011) and Ekon et al. (2014) that, the male and female students’ in the experimental group improved upon their interest than their counterparts in the control group irrespective of gender. The finding however, deviates from that of Danjuma and Nwagbo (2015) who found that female students seemed to have shown greater interest than their male counterparts as cited in the literature.

The finding also disagrees with Nwagbo and Okoro (2014) who reveal that the male students in cooperative and competitive groups seemed to have shown greater interest in Biology than their female counterpart unlike those in the individualistic group. This result could be due to the classroom which was students friendly. It could also be attributed to the fact that their views were recognized and respected which have boosted and developed their confidence in their ability and apply Problem-Solving Instructional Method in the learning of Basic Science. Finding implies that the Problem-Solving Instructional Method used in teaching students in the experimental group improved their interest in Basic Science more than the Conventional Method which was used for the control group. This outcome supports Abakpa (2011), Ekon et al. (2014) and Eronkhon who all found that effective teaching methods help in enhancing students’ interest in science irrespective of gender. That is, an effective method enhances higher interest in Basic Science which Problem-Solving Instructional Method showed in this study. The findings however, deviates from that of Danjuma and Nwagbo (2015) who found that female students seemed to have shown greater
interest than their male counterparts as cited in the literature.

CONCLUSION
Based on the findings of the study it was concluded that students’ interest were enhanced due to the innovative method.

RECOMMENDATIONS
Based on the findings of this study, the following recommendations were made:
1. Secondary school teachers should be discouraged from the continuous use of conventional method in the teaching of Basic Science as the method make students performed poorly in the BSAT in Basic Science.
2. Authorities in science Education (Ministry of Education, school principals, school proprietors among others) should organize workshops and seminars to popularize the use of problem solving method and acquaint science teachers’ especially Basic Science teachers on how to use problem solving method effectively in schools.

REFERENCES


