RESOURCE INPUTS AS CORRELATES TO ACHIEVEMENT OF STUDENTS AT UPPER BASIC EDUCATION LEVEL IN BENIN CITY, EDO STATE

By
Igbafe, Kate Rashida
Entrepreneur and General Studies Unit,
University of Medical Sciences, Ondo State, Nigeria
igbafe_k_l@yahoo.co.uk

ABSTRACT
The importance of human and material resources is emphasized in schools curriculum. A broad school curriculum is suggestive of a considerable increase in school resource input and their effective implementation and management, while inadequate provision of resources inputs is a major bottleneck of educational development. The study examined the adequacies of resource inputs such as classrooms for implications of overcrowding, books and learning materials, as well as laboratory facilities in comparison to students output for two academic sessions. An investigation using four hypotheses was applied and a questionnaire was designed and administered to staff of ten Junior Secondary Schools in Egor Local Government Area of Edo State with each school consisting of twelve respondents yielding a total of 120 sample subjects. The data collected were analysed using the Pearson Product Moment Correlation (PPMC) r-coefficient and t-test method for examination of 5% confidence that resource inputs does not influences students’ academic achievements. Findings of the study revealed that resource inputs have significant influences on students’ academic performance because higher supply of input resulted in better academic achievements as indicated by the positive Pearson’s r values. Also in spite of some schools having equipment lying idle, due to no physical housing structures and/or expertise to install and operate them in urban schools, they still produced a greater mean score percent value than the rural schools. It is recommended that, adequate and essential resource inputs should be provided and properly managed in all the upper basic education level schools in Egor local government area and also qualified and or experience teachers should be recruited into these schools to enhance overall students’ academic performances.

INTRODUCTION
The introduction of the 6 - 3 - 3 - 4 system was an educational policy that showed the realization of Nigerian’s quest for a functional education system which was aimed the dependencies on the government for employment of secondary school graduates. The system implies that, a pupil shall spend six years in primary school, three years in junior secondary while taking courses in pre-vocational as well as academic subjects. On completion of the junior secondary education, and depending on the student’s academic performance, ability and willingness, a student proceed either to pursue a career of his/her choice in a trade learnt during the junior secondary level (upper basic education level) programme or proceed to the senior secondary for another three years programme. At the senior secondary school, a student offers courses with core-curriculum designed for broader knowledge and outlook for advanced studies. On completion of the senior school, the student may proceed for a four years higher educational study in a tertiary system. The 6 - 3 - 3 - 4 system was intended to inculcate a sense of national consciousness and national unity in students and also to
inculcate the right type of value and attitude for the survival of an individual in the Nigerian society, in addition to train the mind of students in understanding the entrepreneurial world and lastly to provide appropriate skills and abilities for the individual to exist and contribute to the development of the society. To this end, the subjects offered at the upper basic education level were, mathematics, English language, Nigerian languages, integrated science, social studies, arts and music, practical agriculture, religion and moral instruction. Others are physical education as well as two pre-vocational subjects like woodwork, metalwork, electronics, mechanics, local crafts, non vocational electives like Arabic studies and French. Then at the senior secondary school only core subjects leading to the requirements for tertiary education are offered. This type of educational programme could be a laudable venture in terms of socio-economic and political development of the nation. However, attainment of the goals lies in the programme effective implementation which requires heavy inputs in human, material and financial resources. Part of these inputs includes the recruitment and development of qualified and experienced teaching staff. Although teachers alone are not solely responsible for the various factors that may affect a child’s academic performance, they play a major role in the child’s educational and moral development. The present school organization in Nigeria is such that the junior and senior schools share same school facilities. That is the government has not fully delineated and relocated the upper basic education levels away from the senior secondary levels in same manner that primary schools are to secondary schools. Consequently a separation of facilities and structures had not been distinctly marked between the two secondary school types (Ajayi, Lawani and Adeyanju, 2011).

Between 1985 and 2004, there had been significant increase in the allocation of funds to education particularly the recurrent costs. This is noticeable in the educational expenditures of Edo State from ₦160.5 million through ₦180.41 million to ₦738.5 million (Igbafe, 2009; Ekpo and Is’haq, 2014). This effort of the government to make education more functional by expending such fund could be attributed to the important role which the nation consider that education might play in the national development plans. But it would appear that such objective was yet to be met due to the poor quality of education output. It is believed that the Nigerian school quality education is related to the ability of students to meet the qualities of being educated. Significantly, such abilities should result in students performing remarkably well in the prescribed junior or senior secondary certificate examinations, which are standardized examinations administered to the final year student in secondary schools. There is the assumption that the quality and quantity of inputs into education have a huge influence on academic performance and other educational objectives, because a relationship exists between the means of production (input) and what is to be produced (output); that unless quality output (student) is matched with quality inputs (money allocated to personnel, equipment, space and material) the quality of output will not be readily accepted as satisfactory to excellent (Deswary, 2015; Lunenburg, 2010).

To facilitate the effectiveness of teaching and learning process, there is need for adequate material resources such as textbooks, teaching aids, laboratory workshop equipment and adequate pupil to teacher ratio in the school. Although efforts by the Nigerian government through its policies to improve the functionality and quality of education, the academic performance of students’ has continued to suffer some decline. These is because many upper basic education level schools including those within Egor local government area of Edo State lack adequate teaching and learning material resources ranging from library books, learning/drawing materials/studios and functioning science laboratories. The study examined some of the non-heritable factors that are related to
academic performances. To utilize the upper basic education level schools in Edo State as base case, since no such empirical investigation had yet been documented to provide an understanding of the influence of educational inputs both human and material on students' academic performance as well as provide an understanding of the importance of such inputs in order to achieve the goals of education.

The attainment of objectives set for an educational system is a foremost basis for existing and when an educational system deviates from its objectives and priorities, it lacks basis for evaluating its performance for the purpose of future planning. Learning process may be affected by several factors including socio-economic background, students' personality factors, teachers' personality factors, peer influence, school resources and the output of the schools previously attended by the student. Students' performance in the science subjects or any other subject at the secondary school level may be directly affected by the amount of school resources which are made available and utilized as specified by the various curriculum. Educational inputs consist of class teachers, books, physical facilities and instructional management acquired at a cost to instruct students throughout the school years. The latter are to ensure that teaching and learning are effective. For instance, if the class size is very large, beyond management limits the lecture time would be reduce to allow for assimilation of effective learning delivery. Students are usually the focus of the resource allocation process within the classroom. If the teaching is effective students prove they have learned a subject by attaining higher class level via tests and examinations and eventually graduate after taking a final evaluation in upper basic education level and senior secondary school examinations. The attainment of the desired goal takes place over a period of time and the production is a long circle of events involving the allocation and utilization of resources in each year of the production process. The academic performance of students is therefore dependent not only on the resources to which they are exposed in the last class but also on the cumulative resources in the beginning of the first grade (Eboatu, 2010; Dwoeye and Yara, 2011; Hensen, 2002; Tsang, 1997).

Inputs are tangible resources which include students, finance, teachers, administrators, buildings, books and equipment. Inputs are seen as consisting of curricula, school administrative services, organization and management variables, educational research activities, school feeding. It had also been expressed as students versus teachers' time, and on socio economic background of students, teaching style, motivation and other behavioural attitudes of teachers. Organizational variables like class size, pupil teacher ratio, books, location of school as well as previous achievement or test scores are also regarded as inputs (Grossman, Stodolsky and Knapp, 2004; Kellaghan and Greaney, 2003; Azuka and Kurumeh, 2015; Nascimento, 2008; Mayer, 2002; Hensen, 2002; Levine, Norenzayan and Philbrick, 2001; Monk and Hussain, 2000; Monk, Hussain and Miles, 2000). Non-school factor such as socio-economic status of students as measured by the income level of their parents, parent educational qualification and library volume at home had explained variance in student academic performance. Difference in family backgrounds are sources of inequalities in schools achievement. That is students whose parents have attained high socio-economic status also tend to show a high level of educational performance. Poor performances noticed from the children of lower status parents are due to cognitive and linguistic inadequacies, value orientation and self image which constitute major handicaps to educational achievement and hence social advancement (Azhar, Nadeem, Naz, Perveen and Sameen, 2013; Ojimba, 2013; Machebe and Ifelunni, 2014; Osokoya and Adegoke, 2014).

The absence of green playing space, mini play grounds, un-avoided outside lavatories, small staff rooms,
inadequate storage space, inadequate space for movement and physical education, lack of smaller rooms for work and peer-group administration provision. The speed and effectiveness to enable teachers and pupils perform their tasks for educational growth depends largely on suitable economic school building facilities. These include sufficient space, lighting, ventilation, furniture and equipment. In addition, class size affects student academic performance. Thus there is a maximum size which determines the quality of learning in the classroom. The teaching professionals have claimed many advantages of reduced class size as against the adverse corollaries of large classes. Larger classes produce lesser active student participation and reduced degree of creative thinking. However, the degree of largeness had been put at an optimum of forty pupils per class (Burstall, 2000; Adediwura and Bada, 2007; Ehrenberg, Brewer, Gamoran and Willms, 2001; Haimson, 2010).

Laboratory and workshops are essential for schools academic work in junior and senior secondary schools. Subjects like integrated science requires laboratory works as well as subjects like building, masonry, carpentry requiring workshop practices for adequate student enhancement. In addition the presence of a library which at any particular time should hold one tenth of the pupils population. In most Nigerian secondary schools, the student - teacher ratio was fixed for 40 to 1 which are often taken to mean standard class size. Student-teacher ratio varies by nature of the subject. The implementation committee fixed a pupil - teacher ratio of23 to 1 for pre-vocational subject while a standard class of 40 pupils was fixed for integrated science. Ten and forty have been set for home economics and business studies, respectively. This means that pupil-teacher ratio is a function of the type of subject under consideration. A pupil-teacher ratio which is relatively low in one subject may be high in another subject (Adeyemo, 2010; Omiunu, 2014).

Studies have documented the significance of teacher pupil ratio to cognitive learning in the school. This ratio as well as teacher quality variables had been shown to positive effect on the performance of students. Increase in class size results in decrease students' achievement, thus, class sizes are very important in the teaching and learning activities, particularly when students’ academic performance is being considered. In many developing nations congestion in classrooms leads to perennial academic problems. This is due to poorly funding of educational systems. The Nigeria educational system is not far from this situation where secondary education in the country is poorly funded, hence most of the secondary schools experience classroom congestion. These situations adversely affect secondary school students’ academic performance. The large number of students passing through the secondary school system in Edo state would most likely pose a serious problem, particularly if the government defaults in the provision of adequate furnished classrooms (Akinsolu, 2012; Fabunmi, 2000; Fabunmi, Brai-Abu and Adeniji, 2007).

Urban children who have more material resources for learning and are more exposed would likely perform better than rural children that comes from an environment with inadequate learning materials. It is therefore, appropriate that rural schools should be furnished with quality resources to level up the difference to provide a rich learning environment for the rural children (Iatarola and Stiefel, 2003; Ogundokun and Adeyemo, 2010). Resource distribution is commonly unequal to different schools since revenue and expenditure per pupil vary between the highest and the lowest districts that is between urban and rural communities (Adeyemi, 2011; Akinsanya, 2007; Cellini, 2012). An important input in the educational system is the deployment of teachers to schools resulting in equal or unequal allocation of resources to schools. Teachers have little or no interest in being posted to rural schools but as much as possible only less qualified teachers who
may have no alternative choice always end up in rural schools. These rural schools are usually understaffed of qualified teachers, resulting in low quality education received by children attending rural schools. More qualified teachers ought to be recruited and deployed to rural schools but what really happens is that they congregate in urban schools and the education of the rural children is often left in the hands of less qualified low earning and inferior teachers. As a result, pupils-teacher ratios, which are indicating of staffing load between urban and rural schools, vary significantly (Coombs, 1992). In Iwuagwu and Nwagbo, (2014), the importance of science teaching facilities in secondary school in Nigeria was emphasized, they asserted that the availability and utilization of these could form a good base for science education in the match toward scientific and technological advancement. Among important factors that contribute to teaching and learning process is a high quality school resource input. There are evidences which indicated that the quality of schools can be determined by the quality of infrastructure, teaching staff, laboratory and library facilities and teacher-student ratio. In addition, school resources can create an atmosphere of satisfaction, a sense of belonging and air of integrity and high academic aspiration by the students (Musyoka, 2013).

For a school to function effectively, a wide range of resources such as textbooks stationary, audio-visual materials, workshop equipment, laboratory chemicals and materials, and comfortable furniture should be of good quality and sufficiently available at all times. Students, teachers, and school administrators often spend substantial part of their lives in school and so the quality of life in school is, therefore, important, even if it has no effect on students’ chances of adult success. Hence it is bad for children to feel bored or miserable in school regardless of whether misery or boredom in school lead to misery and boredom in adult life (Kunje, Selemani-Meke and Ogawa, 2009; Owo, 2014).

Resource inputs which may be influential in one particular study may be found to be of little or no significance in another. Teachers’ experience and teaching qualification have influence on students’ academic achievement. Also various components of school expenditure, teachers’ salaries, the percentage of teachers with masters and doctorate degrees percentage of teaching time spent in their areas of specialization all have significant effects on students’ performance (Caprara, Barbaranelli, Steca and Malone, 2006). Carnoy, Brodizak, Luschei, Beteille and Loyalka, (2009); James, Pate, Leech, Martin, Brockmeier and Dees, (2011); Figlio and Kenny, (2007), pointed out that teachers’ salaries, experience per pupil evaluation and teacher education have some relationship with student performance. In addition, teachers’ educational background and experience have significant effect on teaching and students’ performance. Furthermore, teachers do affect students learning to a degree that is both statistically and practically significant. Another study still on the teacher variables reports that though the proportion of teachers that are qualified is not an absolute indication of the quality of a school, the variation in this proportion of the qualified teachers in the various districts or states (Abe, 2014; Aliyu, Yashe and Adeyeye, 2013; Khalid, Yasmin and Azeem, 2011; Geo, 2007; Saw, 2009).

On the effects of school facilities on academic performance, school facilities strongly influence academic achievement and are statistically more able to predict achievement (Heyneman and Loxley, 1983; Jeynes, 2003). Also the availability of textbooks influences tests and the total achievement scores. Other variables which included school plants, class size, textbooks, and teaching materials have been shown to significant affect students’ academic performance (Nelson, 2008; Kunje et al, 2009; Bua, Olatunde and Amough, 2013). Therefore, this study would attempt to investigate the relationship between some secondary school resource inputs and students’
academic performance in Egor Local Government of Edo State.

Objectives of Study
The following specific objectives were formulated to be achieved in this study:

1. To find out the extent to which the quantity and quality of input supplies influence academic performance
2. To determine whether management of resource inputs have influence on academic performance of junior secondary students
3. To ascertain if financial supply to educational system influence academic performance
4. To find out the resource inputs difference between rural and urban junior secondary schools

Research Questions

1. To what extent do quantity and quality of input supplies influence academic performance of junior secondary school students?
2. What is the influence of management of resource inputs on academic performance of junior secondary school students?
3. To what extent do financial supply to educational system influence academic performance of junior secondary school students?
4. What is the difference in the resource inputs between rural and urban junior secondary schools?

Hypotheses

1. The level of supply input does not have significance influence on academic performance
2. Management of resource input does not have significant influence on academic performance,
3. The financial supply to the educational system does not have significant influence on academic performance.
4. there is no significant difference between rural and urban junior secondary schools in resource inputs.

Methodology
The population of the study consisted of 116 Upper Basic Education level schools of both public and private schools types in Egor local government area of Edo State. Of the total schools, ten schools were randomly selected for the study. Out of these ten schools, a total of 120 sample subjects were drawn. The sample subjects in each school was made up of the principal, bursar, librarian, four teachers (consists of one teacher each from integrated science, art, agriculture and pre-vocational subject or physical education) and five students per school. Thus from the ten schools the distribution amounted to 10 principals, 10 bursars, 10 librarians, 40 teachers and 50 students. Since the study was concerned with the correlation between materials availability against students’ academic performance of upper basic education level schools, all sampled schools, had enrolled for the National Junior Secondary School Examination and obtained results of their students for the 2006/2007 and 2007/2008 academic years which was the period under observation. The study area Egor in Edo State is a local government with some part of areas closely of urban characteristics and other parts portraying the appearance of a rural community.

Sampling procedure
The samples used here included the 10 principals, 10 librarians, 10 bursars, 40 teachers and 50 students. The research instrument (questionnaires) were distributed to the various sample persons and on completion, the questionnaires were retrieved and the response information extract, and transformed into data of the study variables for analyses. The sampling of schools was done randomly but geographically distributed one from the North, North-East, East, South-East, South, South-West, West, North-West, Centrally and close to the
local government council area. Of the 116 schools, only those that had enrolled students for the junior secondary school examination for at least two years as at September 2008 were selected since they were the ones fully accredited by the various National Examination Council as equipped with required materials suitable to conduct such examinations.

The research instrument (RIAPQ) Resource Input on Academic Performance Questionnaire was used. It was designed with sections for the school principals to provide information on the name of the school, year of establishment, the number of junior secondary school students at the 2006/2007 and 2007/2008 sessions and the number and qualifications of teachers who taught these sessions. A three point to one point scoring was used for three categories of qualification in the direction of 3-points highest to 1-point lowest. That is M. Ed./M.A./M.Sc. yields 3-points, while B.Ed./B.A./B.Sc./HND yields 2-points and N.C.E./O.N.D./Others yields 1-point. This was to examine experience and capability in the various subjects taught.

In order to analyse facilities such as class rooms, workshops, and laboratory, questionnaires were distributed to the school’s science teachers to elicit information concerning the nature and availability of the facilities in their school. These were grouped into number of furnished, sparsely furnished, and number not furnished laboratories and workshops. The third section was concerned with analysis of junior secondary school certificate examination for the 2006/2007 and 2007/2008 sessions. The section was completed by the principal of each school. This indicated total enrolment, number of students who passed with five credits and above, four credits, three credits, two credits and one credit respectively. Also, questionnaires were distributed to the school principal and school bursars to determine the state of fund available in these schools. The fourth section of the questionnaire consisted of the library books and available books of junior secondary school subject areas was assessed by the librarian of each school to determine the nature of the school library, adequacy of volume of books, various subject books and usage of library. These were scored on a five-point scale in the direction of 5-point highest (A) to 1-point lowest (E).

DATA ANALYSIS

On retrieval of the answered questionnaires from the various respondents after completion, their responses were translated into sample data for analyses. The data obtained from the respondents were analysed using t-test and Pearson Product Moment Correlation (PPMC) r-coefficient Pearson’s statistical methods and examined on the four research hypotheses formulated (Table 1).

<table>
<thead>
<tr>
<th>S/N</th>
<th>Research Questions</th>
<th>Research Hypotheses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Does the quantity and quality of input supplies influence academic performance?</td>
<td>The quantity and quality of input supplies does not significantly influence academic performance.</td>
</tr>
<tr>
<td>2</td>
<td>Does management of resource inputs have influence on academic performance of junior secondary student students?</td>
<td>The management of resource inputs does not have significant influence on academic performance.</td>
</tr>
<tr>
<td>3</td>
<td>Does financial input to the educational system have influence on junior secondary student achievement?</td>
<td>Financial supply to the educational system does not have significant influence on academic performance.</td>
</tr>
<tr>
<td>4</td>
<td>Is there any difference between rural and urban junior secondary schools in resource inputs?</td>
<td>There is no significant difference between rural and urban junior secondary schools in resource inputs.</td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSION
The results of the analysed data from respondent outcomes are presented in Table 2. It provided statistical information on the sample population, averages, standard deviation, average percent of the total resources under studied in the ten selected junior secondary schools in Egor local government area of Edo State.

Table 2: Selected Resource Inputs for Junior Secondary Schools

<table>
<thead>
<tr>
<th>S/N</th>
<th>Resource Input</th>
<th>N</th>
<th>Standard Deviation</th>
<th>Mean Percent</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Workshops/laboratories</td>
<td>257</td>
<td>0.40</td>
<td>30.00</td>
<td>Inadequate</td>
</tr>
<tr>
<td>2</td>
<td>Finance</td>
<td>257</td>
<td>0.40</td>
<td>48.10</td>
<td>Inadequate</td>
</tr>
<tr>
<td>3</td>
<td>Total</td>
<td>257</td>
<td>0.40</td>
<td>40.05</td>
<td>Inadequate</td>
</tr>
</tbody>
</table>

Based on research question one which stated that does the quantity and quality of input supplies influence academic performance? Table 2 shows a mean percent of resource input of 40.05%, which is inadequate as it is less than 50% of the expected supply. So there is no adequate supply of resource input in the Junior Secondary Schools. However, research question two which declared whether management of resource inputs have influence on academic performance of junior secondary students, is illustrated in Table 3.

Table 3: Academic Performance of Student of Junior Secondary Schools in Egor L.G.A.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Session</th>
<th>N</th>
<th>Standard Deviation</th>
<th>Mean Percent</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2006/2007</td>
<td>248</td>
<td>0.55</td>
<td>96.60</td>
<td>High</td>
</tr>
<tr>
<td>2</td>
<td>2007/2008</td>
<td>257</td>
<td>0.77</td>
<td>95.20</td>
<td>High</td>
</tr>
<tr>
<td>3</td>
<td>Total</td>
<td>505</td>
<td>0.66</td>
<td>95.90</td>
<td>High</td>
</tr>
</tbody>
</table>

Table 3 shows a mean percent of performance for 2006/2007 and 2007/2008 are 96.60% and 95.20% respectively and a total of 95.90% all showing an adequate performance of junior secondary school students in their academic work. This study was based on resolving four hypotheses which are illustrated in Tables 4 to 6. Hypothesis one tries to show if the level of supply input does not have significance influence academic performance. This was evaluated in Table 4.

Table 4: Pearson’s r-table on Influence of Supply Resource Inputs on Academic Performance

<table>
<thead>
<tr>
<th>Variables</th>
<th>N</th>
<th>r</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource Inputs with Achievement 2006/2007</td>
<td>248</td>
<td>0.297</td>
<td>0.000</td>
</tr>
<tr>
<td>Resource Inputs with Achievement 2007/2008</td>
<td>257</td>
<td>0.404</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Table 4 shows r values for 2006/2007 and 2007/2008 of 0.297 and 0.404 respectively with both periods having a P-value of 0.000. Testing at an alpha level of 0.05, the P-value is less than the alpha level. This indicates that the null hypothesis stated earlier that the level of supply of resource inputs does not have significantly influence academic performance, is thus rejected. Consequently coupled with positive r values, it implies that the level of supply of resource inputs significantly influences academic performance. Also since the r is positively increasing, it shows that higher the supply of inputs between 2006/2007 and 2007/2008,
yielded better academic performance. Hypothesis number two attempts to prove that management of resource inputs does not have any significant influence on academic performance. This was statistically resolved in Table 5.

Table 5: Pearson’s *r*-table on Influence of Management of Resource Input on Academic Performance

<table>
<thead>
<tr>
<th>Variables</th>
<th>N</th>
<th>r</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource Management with Achievement 2006/2007</td>
<td>248</td>
<td>0.303</td>
<td>0.000</td>
</tr>
<tr>
<td>Resource Management with Achievement 2007/2008</td>
<td>257</td>
<td>0.402</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Table 5 above shows an *r* value for the year 2006/2007 as 0.303 and a *P*-value of 0.000, also an *r*-value for the year 2007/2008 as 0.402 and a *P*-value of 0.000. Testing an alpha level of 0.05, the *P*-value was less than the alpha level. So, the null hypothesis, which states that management of resource input does not have significant influence on academic performance, was out rightly rejected. Consequently, it has been shown that management of resource input has significant influence on academic performance. In addition, since the *r* is positive and increasing, means the better the management of resources the better the academic performance. Hypothesis number three implied that the financial supply to the educational system does not have significant influence on academic performance. This hypothesis was examined with values from Table 6.

Table 6: Pearson’s *r*-table on Influence of Financial Input on Academic Performance

<table>
<thead>
<tr>
<th>Variables</th>
<th>N</th>
<th>r</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial input with Achievement 2006/2007</td>
<td>248</td>
<td>0.098</td>
<td>0.124</td>
</tr>
<tr>
<td>Financial input with Achievement 2007/2008</td>
<td>257</td>
<td>0.746</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Table 6 shows an *r* value of 0.098 and a *P*-value of 0.124 for the year 2006/2007, while an *r*-value of 0.746 and a *P*-value of 0.000 for the year 2007/2008. Testing at an alpha level of 0.05, the null hypothesis which states that financial supply to the educational system does not have significant influence on academic performance is accepted for the year 2006/2007 and rejected for the year 2007/2008. From hypothesis number four there is no significant difference between rural and urban junior secondary schools in resource inputs.

Table 7: *t*-test Table on Resource Inputs by Location

<table>
<thead>
<tr>
<th>Location</th>
<th>N</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>t-value</th>
<th>Degree of freedom</th>
<th>t-value at α=0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>198</td>
<td>20.42</td>
<td>1.18</td>
<td>65</td>
<td>255</td>
<td>196</td>
</tr>
<tr>
<td>Rural</td>
<td>59</td>
<td>16.33</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7, shows for a calculated *t*-value of 6.5 and a degree of freedom of 255, after testing at an alpha
level of 0.05, the t value was 1.96. Since the calculated t is greater than the test t value, the null hypothesis which states that there is no significant difference between rural and urban junior secondary schools in resource input was rejected which consequently implies that there is a significant difference between urban and rural junior secondary schools in resource inputs. In addition, given that the mean value of the urban school outcome is greater than that of rural schools, it demonstrates therefore that there is more resource input in the urban schools than the rural schools.

DISCUSSIONS OF RESULTS

Supply of resource input to junior secondary schools

The analysis of data of the supply of resource input to junior secondary schools proved to be inadequate. This was not surprising as result collected from all the schools sampled showed shortage of most fundamental facilities that is required for learning: especially in the areas of text books, library facilities, qualified teachers, stationeries as well as science laboratory facilities and workshops. These findings agrees with observations of other writers that physical facilities in schools influence student learning effectively and improve performance (Asiabaka, 2008; Olosunde and Akinpelu, 2012; Mpho, 2013). Also Adeyemi, (2008) claimed that laboratory and workshops are essential for schools in order to achieve set educational goals.

Students Academic Performance

The analysis revealed a mean percent of 96.6% and 95.9% for the 2006/2007 and 2007/2008 respectively. This means an adequate academic work were attained in both years. Adequate performance in spite of insufficient supply of resource input could be due to parents organizing extra lesson classes for students outside the school system and also could be due to examination malpractices among students in schools. Also non school factors such as socio-economic status of student income level of the parent, parent education and volume of library at home, improve student’s academic performance than the school factors (Akomolafe and Olorunfemi-Olabisi, 2011; Eneji, Ubom Bassey, Eneji, Obogo and Dunnamah, 2013).

Level of input supply and Academic performance

Input supply and academic performance was hypothesis and using Pearson’s r to test for the relationship between school input supply and student academic performance, the result showed an r value of 0.297 and P-value of 0.000 for 2006/2007 and 0.404 and a P-value of 0.000. This indicated the level of supply input significantly influence academic performance. The r value being positive shows that the higher the inputs supply the better academic performance. The positive effect of this variable conforms to the observation of Olosunde and Akinpelu,(2012), who opined that the level of material environment is a major determinant of high achievement in schools.

Management of Resource Input and Academic Performance

The second hypothesis was evaluated using a Pearson’s r table to test for the relationship between management of resource input and academic performance. The result showed an r value of 0.303 for the year 2006/2007 and a P-value of 0.000. Also an r value for the year 2007/2008 showed 0.402 and a P-value of 0.000. Testing an alpha level of 0.05, the P-value is less than the alpha level. Consequently, the null hypothesis which states that management of resource input does not have significant influence on students' performance is rejected. This means that proper management of resource input significantly enhances academic performance. However, during data collection it
was surprising to find out that most of sampled schools facilities are left rusting and wasting due to improper management and lack of maintenance. Therefore it is important that proper management of resources in junior secondary schools will increase their life spans of facilities and consequently positively impacting on academic performance.

Financial Supply to Educational System and Academic performance

Analysis of data concerning this variable revealed that financial supply to educational system for the years 2006/2007 did not have significant on academic performance as P-value was greater than 0.05 level of significance while on the other hand, the 2007/2008 financial supply to education system have a significance (Table 5).

CONCLUSION

This study examined the relationship between school resource inputs and students academic performance at the junior secondary schools in Egor local government area of Edo state and deduced that increase in supply of resource inputs significantly contribute to improved academic achievements of secondary school students. This was noted from the positive Pearson’s r values which indicate that higher the supply of input, results in better academic performance. Also resource inputs were noticed to impact on school location indicated by a greater mean value difference of urban schools as against the rural schools. The study showed that within Egor local government area which may be assumed representative of the entire Edo state most secondary schools operate with good and qualified teachers especially in the science and pre-vocational subject areas. In few schools, book/equipment were lacking while some schools had equipment lying idle, the reason being that there were no physical structures and/or expertise to install and operate them. The study revealed that in very few schools where junior and senior secondary schools exist, some teachers are assigned to handle students both in the junior and senior secondary levels, due to the increasing students’ population. However, in the end school resource inputs have proven to influence student academic performance.

RECOMMENDATIONS

This study recommends that adequate resource inputs should be provided to secondary schools in order to improve students’ academic performance. Also it showed that there should be proper management of resource inputs in secondary schools in order to improve students’ academic performance. In addition, qualified and experience teachers should be recruited into secondary schools to enhance academic performances and that adequate school resource input should be distributed equitably to both rural and urban secondary schools in order to improve academic performances. The aforementioned would provide useful information to educational facility planners and various educational agencies in Nigeria on decision making regarding facilities in schools as it presented indices, for the government and other educationist a predictive mechanism to assess the contributions of resource inputs for junior secondary schools development.

REFERENCES

Iwuagwu, T. E. and Nwagbo, C. (2014): Teaching for Creativity: Science Teachers to the Rescue,

Nelson, A. (2008): An Analysis of the Relationship between Teacher Variables and Student Achievement Scores in Hamblen County,

